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LElTER TO THE EDITOR 

Bifurfcating solutions of the topologically massive gauge 
theories with external sources 

K K Loh and C H Oh 
Department of Physics, Faculty of Science, National University of Singapore, Lower Kent 
Ridge, Sinapore 0511, Republic of Singapore 

Xeceived i i  February i99i 

Abstract. We demonstrate how bifurcating solutions for the ( 2 +  1)-dimensional topologi- 
cally massive Yang-Mills gauge field equations with external sources can be constructed. 

Recently there have been many interests in constructing classical solutions of (2+ 
I)-dimensional field theories involving the Chern-Simons (cs )  term. Since for the cs 
action alone the classical solution is trivial, the Yang-Mills (YM) action [l] or the 
charged scalar field terms [2] or both [3] are usually incorporated. Classical solutions 
are useful as they may provide some insight into the full quantized theory. In  this 
letter, we show how bifurcating solutions to the topologically massive gauge field 
theory in the presence of an external source can be constructed. Solutions for topologi- 
cally massive gauge fields with external sources have been discussed in [4]; however, 
no bifurcation is exhibited. Bifurcating solutions in (3 + 1)-dimensional Y M  theories 
were first presented by Jackiw et a/ [SI: two branches emanating from the same point 
in the plot of energy H against total charge Q were found. Our approach in searching 
for bifurcating solutions follows that of [6]. 

For the SU(2) gauge group, the YM equations with the cs term in (2 + 1)-dimensional 
spacetime and the Bianchi identity are respectively 

where J' is the external source and the metric is g,,, = (- + +). The coefficient g of 
the cs term is replaced by -it in Euclidean spacetime. As usual, the choice of ansatz 
for the gauge field A: is of utmost importance and we employ the following: 

A," = (4 "P + 8; f p )  4, + n'n,T (?a)  

A i = d " V  (26)  

w h e r e p = ( x ~ + x : ) " * , n ' = x ' f p ,  4"=&"'n'andd'=n3==O; thegroupindex a = l , 2 ,  
3 and the space index j = 1, 2. The functions, P, V and T depend on p only. For a 
given prescribed external source, it is extremely difficult to construct the solution for 
the gauge field. Instead the technique of [71 is adopted; one first obtains the gauge 
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potential A with the desired properties and then from which the external source current 
is derived. On substituting the ansatz ( 2 )  into (l) ,  we have 

- V " - V ' l p + W 2 = ( ( P ' + P / p ) + J o " $ "  ( 3 a )  

2 V ' T + W + W / p = - ( T P + J 0 ' 6 , "  ( 3 6 )  

P"+ P ' l p  + P / p 2 -  PT2 = -(V'+ Jia$a$j 

( V2 - P 2 )  T = J'"n"n, 

- (  TP)'-(P'+ P / ~ ) T =  ( v T + J ~ ~ s ; $ ~  ( 3 c )  

( 3 d )  

( 3 e )  
where the prime indicates differentiation with respect to p .  To simplify these equations 
we choose the source current as follows: 

J ;  = ( r -  VT2)+"+ MS," (4a) 

J;  = T (  V2-P2)n"nj- (  T 2 P $ " i (  TP)'S;)+j (46) 
where I and M are functions of p only, and gauge covariant conservation of the 
external source current, D,.J" = 0, is ensured. This choice reduces equations ( 3 )  tremen- 
dously: 

- v"- vip = g( P'+ p i p )  - r ( 5 0 )  

- ( p ' + P / p )  = gv (56 )  

2 V ' T + W +  V T I p = - ( T P - M .  ( S C )  

A solution for equations ( 5 a ) ,  ( 5 6 )  can be constructed: 

V = K ( u + 2 - s z )  ( 6 a )  

P = - z K  ( 6 6 )  

I =  c 2 K [ s 2 ( 3 a  +5)-s(s2- l ) z - ( u + 2 ) - s ( 3 a 2 + 7 a + 3 ) / z + a 2 ( n + 2 ) / z 2 ]  ( 6 ~ )  

where K = za e-", z = ( p  and a, s are parameters for the charge distribution. To solve 
for the remaining equation (Sc) ,  we expand the functions T and M by power series 
and after some manipulation, we find 

(64 
M = 52zKL{2s2+s1- 1 -[s(4a+p+7)+ f ( a + 2 ) ] ~ ~ ' + ( a + 2 ) ( 2 n + p + l ) r - ~ ]  ( 6 e )  

where p and f are parameters for the charge distribution. 
For our solution (a) ,  the expressions for the total energy H and the total charge 

Q can be straightforwardly evaluated after some lengthy computation. The energy [7] 
is calculated from the energy-momentum tensor T'", 

T = f L  L -  zB e-" 

H =  d 2 x p  

(7) 

J 
= J  d2x[~(ErE"'+B"B')+JfA"'] 

where E ;  = FP, and E" 
fields. We find 

are respectively the non-Abelian electric and magnetic 

H = (as2+ b)s-2'"+11+ (a2+ d s + e ) ( s +  f)-2'0+B+21 (80) 
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where 

a =r , [2 (6aZ+16a +9)(2=+ 1 )  -3(Za+3)(2a + l ) ( a +  1 )  

- 8 a ( 2 a  + 3 ) ( a  + 2 ) + 4 a ( a  +2)'] 

b = r I [ ( 2 a + 3 ) ( 2 a  + l ) ( a  + 1) -4(a  + l ) ( a + 2 ) ( 2 u  + 1)+2(2a + l ) ( a  +2)']  

~ = ~ , [ ( 2 a + 2 p + 3 ) ( a + ~ + 1 ) - 4 ( a + p + 1 ) ( ~ + 2 ) + Z ( a + 2 ) * ]  

d = -4rz (a  +2)(/3 - 1 ) t  

e = r2[2tz (a  +2),- ( 2 a  + 2 ~  + 3 ) ( a  + p  + I)] 

and 

r, = (Ta)4-("+' )r (2a)  

r2= (6T)4-("+8+2)r(2u + 2 p + 2 )  

and a > 0, p > -(a + 1 ) .  As for the total external charge strength, we project along the 
direction +=, 

Q = d2x Jon+" (9 )  

Q =4T(s+2f )~("+28++' ) r (a  +2p + 2 ) [ t ( a  + 2 )  -PSI. 

and obtain 

(10) 

As mentioned earlier, bifurcation means the branching of the total energy H ( A )  
of the gauge field and external source system when the total external charge Q(A) is 

-0402 - 0 L O O  -0398 -0396 -0394 -0 
0 
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Figvrel. PlotofHagainst QwhcntheparameteroisvaricdbutB=1.000000,s=2.2242~9 
and 1 = 0.400 000. 
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vaned [5], where A is a set of parameters. The existence of local minima of H ( A )  and 
Q(A) at common parametric values, say A = Ac,  will imply the bifurcation of the H ( Q )  
curve [6]. We have four parameters here, A =(a, p, s, 1). and it is not easy to find the 
common parametric values of a, p, s, f at which H ( A )  and Q(A) have their respective 
minima. However by trial and error, we find after much effort that H and Q do possess 
their respective local minimum when p = 1.000 000, f = 0.400 000, s = 2.224 259 and 
a = 1.829 673. In our search for the bifurcation point, we fix the values of p, s and f 
each time, the parameter a is then continuously varied. In this way, H and Q essentially 
depend on only one parameter, namely a. In figure 1, we present the bifurcating curve 
with the characteristic cusp in the plot of H against Q, for which the values of the 
parameters p, 1, s are fixed as above whilst the parameter a is varied. Note that the 
solutions P, T, V and the source functions I M can be easily plotted and are not 
shown here.. 

We end with short remarks. 
(1) It is not difficult to construct solutions for equations ( I ) ,  but if we require the 

solutions to have finite total energy H and total charge Q so that the branching occurs 
in the plot of H against Q, then much effort is demanded. 

(2) There may be other common parametric values of (a. p, s, 1) at which H and 
Q can have their respective local minima. A systematic search is possible. 

(3) The energy expression (7) is gauge 'dependent because of the term JPA"'. 
Gauge-independent energy results if we set JP = 0, but then construction of bifurcating 
solutions is harder. 

We thank L C Sia for his idea of using series expansion. 
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